
Holistic IoT Architecture for Secure Lightweight
Communication, Firmware Update, and Trust

Monitoring
Jesus Sanchez-Gomez

Dept. of Information and Communications Engineering
University of Murcia

Murcia, Spain
jesus.sanchez4@um.es ORCID 0000-0003-2673-3790

Rafael Marin-Perez
Dept. of Research and Innovation

Odin Solutions S.L.
Murcia, Spain

rmarin@odins.es ORCID 0000-0002-8521-1864

Mirko Ross
Dept. of Direction

Digital Worx GmbH
Stuttgart, Germany

m.ross@digital-worx.de

Antonio Fernando Skarmeta Gomez
Dept. of Information and Communications Engineering

University of Murcia
Murcia, Spain

skarmeta@um.es ORCID 0000-0002-5525-1259

Abstract—IoT applications have recently proliferated due to
their applicability in several fields, as well as the growing number
of enabler technologies. For this reason, the landscape presents
vast deployments formed by end-devices with heterogeneous ca-
pabilities or requirements. Low-power wide-area communication
technologies have partially filled the gap for low-bandwidth low-
cost IoT devices that are placed in vast coverage areas without a
power-grid or cellular signal. However, these technologies seldom
offer interoperable solutions to manage security-related tasks,
such as monitoring cybersecurity attacks or firmware update
distribution. Thus, there is a need for a human-centric platform
that enables trust-worthy management of large heterogeneous
IoT networks. In this work, we present a solution that enables
trust monitoring and firmware update distribution employing
novel open standardization efforts designed for constrained
devices. The presented solution leverages on LO-CoAP-EAP, a
novel lightweight bootstrapping protocol, LoRaWAN, a wide-
spread long-range communication technology, SCHC, an IPv6
header compression and fragmentation mechanism, OSCORE,
an end-to-end application-layer protection, IPFS a peer-to-peer
decentralized storage solution, as well as a Hyperledger, a dis-
tributed ledger technology for secure validation of the distributed
contents.

Index Terms—LPWAN, SCHC, CoAP-EAP, IPFS, Blockchain

I. INTRODUCTION

The Internet of Things (IoT) has recently become one of the
most important topics in social, economic and technological

This work has been supported by the European Commission under
IoTCrawler (Grant No. 779852), Plug-n-Harvest (Grant No. 768735), EU
IoTrust (Grant No. 825618), PHOENIX (Grant No. 893079), PRECEPT
(Grant No. 958284), 5GASP (Grant No. 101016448), and INSPIRE-5Gplus
projects; by the Spanish Ministry of Science, Innovation and Universities,
under GUARDIAN (Grant No. TSI-100110-2019-20) projects; by the Spanish
Ministry for the Ecological Transition and the Demographic Challenge under
the MECANO project (Grant No. PGE-MOVES-SING-2019-000104); and by
Seneca Foundation in Murcia Region under 20751/FPI/18 which is partially
funded by FEDER funds.

advancement. IoT connectivity allows reaching the physical
domain through connected devices including sensors and ac-
tuators. There are solutions constantly appearing in the global
market, improving the performance and connectivity for small
form-factor, battery-powered devices. For this reason, there
is an estimated exponential growth in the amount of devices
connected to the Internet. The IoT application include a wide
variety of verticals, such as Smart Cities, Smart Buildings,
Industry 4.0, e-Health, and Intelligent Transportation Systems
(ITSs), among others. Numerous IoT scenarios leverage on
Machine Type Communications (MTC), where low-power
devices are deployed to monitor different environment param-
eters, during long periods of time. Some of these devices are
also capable of actuating over their environment. Typically,
MTC implies the use of a centralized platform where a higher
level of orchestration by the deployment administrators can be
achieved.

Low-Power Wide-Area Networks (LPWANs) [1] are capa-
ble of providing wireless coverage range to large areas with a
reduced amount of base-stations. They allow the connectivity
of rural or remote regions without cellular signal. Additionally,
In some scenarios, the lack of power-grids or wired communi-
cation mediums force IoT devices to employ low-power low-
bandwidth communication technologies. With the arrival of
LPWANs, the IoT gap for those applications has been partially
solved. However, these notable characteristics are achieved at
the expense of having a highly constrained communication
channel. It is designed to support a relatively reduced number
of short-packets per device, per day. This limitation can be
noticed in the most popular LPWAN technologies that employ
unlicensed radio-bands, I.e., SigFox, LoRaWAN [2], or NB-
IoT. As a consequence of the above-mentioned limitations,
LPWAN technologies prefer network stacks with a reduced



number of lightweight protocols [3].
LPWAN devices are usually installed in hard-to-reach lo-

cations, and operate during months or even years without
direct human supervision. Hence, they do not typically in-
clude keypads or displays. Thus, they have a relatively long
operation life-cycle of unattended operation, during which,
LPWAN devices are rarely monitored or updated directly by
an operator. This issue is only exacerbated when security
update patches are extremely hard to distribute remotely by
employing the low-bandwidth datarates commonly present in
LPWANs. Also, common scenarios include the deployment
of hundreds or even thousands of these devices. Due to this
massive aspect of IoT, security vulnerabilities present a severe
challenge to solve once the deployment stage is finished, due
to the potential cost of directly updating the software of each
unit. Additionally, the response time to update all the affected
devices must be as short as possible, since it is very unlikely
that attacked devices can be remotely updated once the original
firmware has been maliciously tampered. Therefore, security is
an integral part of every IoT platform, during the early design
stages of each project. Not only the legitimate owner of the
device might loose its control, but also the tampered units are
typically employed as botnets in malicious Distributed Denial
of Service (DDoS) attacks, which only exacerbates the need
for efficient and timely patch updates.

However, existing IoT products fail to provide human-
centric and trustworthy applications covering security and pri-
vacy requirements specified in international legal regulations,
such as: (i) GDPR1 for data privacy and protection of personal
data, (ii) NIS Directive2 for inter-network operations, and
(iii) ENISA Regulation for ICT Cybersecurity Certification3.
Moreover, to maintain IoT networks, open and trustworthy
solutions are required for detecting vulnerabilities in IoT
software and hardware, and provide a robust firmware update
management. However current solutions [3] are complex,
vendor-specific, or not openly standardized. IoT deployments
are characterized by devices with heterogeneous computational
capabilities and network requirements. Thus, solutions that en-
able interoperation through open standardized technologies are
required to improve cohesion and reduce network management
overhead.

In this work, we present a novel architecture to tackle
these challenges, based on a trustworthy, open, and human-
centric solution to setup and maintain IoT networks. This
proposal is based on the integration of a novel bootstrapping
protocol, Peer-to-Peer file storage solutions, and Distributed
Ledger technologies in order to provide secure initialization of
IoT devices, vulnerabilities detection, and software patching.
The proposed solution is based on recent standardization and
research activities by the Internet Engineering Task Force
(IETF) and peer-to-peer InterPlanetary File System (IPFS)
with Distributed Ledger Technology, to ensure decentralized

1http://data.europa.eu/eli/reg/2016/679/oj
2http://data.europa.eu/eli/dir/2016/1148/oj
3http://data.europa.eu/eli/reg/2019/881/oj

IoT networks. The main expected outcome will be a standards-
based solution with open-source stacks for IoT devices and
distributed services platform that will be supported by real-
world pilot validation.

The remainder of this work is organized as follows. Sec-
tion II provides background regarding bootstrapping and se-
cure packet transmission over long-range wide-are technolo-
gies. Section III introduces the proposed secure lightweight
communication, trust monitoring, and firmware update archi-
tecture. Finally, Section IV closes the paper and indicates
future ways.

II. BACKGROUND

Manual re-configuration of end-devices is prohibitively ex-
pensive after the deployment stage. Devices operate remotely
from the moment they are installed in their definitive location.
Then, all the following device configuration procedures are
done over radio. The first dynamic procedure performed by
IoT devices is known as secure bootstrapping. This involves
authentication, authorization and key agreement operations,
which are vital to control network resources and communica-
tions. Confidentiality and authentication processes of popular
LPWAN technologies are designed with their radio layer
in mind. As a result, they are vendor-specific, which dis-
ables interoperability with other architectures or technologies.
This design choice is motivated by the severe restrictions
in bandwidth, that do not allow exchanges of packets larger
than a few 10s or 100s of bytes. For this reason, LPWAN
interoperable security mechanisms present a challenge, since
common technologies that work over IP network layer are
prohibitive in this context. IP-based technologies typically
employ a standardized protocol such as RADIUS [4] or
Diameter [5] to carry Extended Authentication Protocol (EAP)
messages. However, these require the transmission of relatively
large packets, as well as a high number of exchanges. Thus,
there is still a need for a standardized lightweight protocol that
permits IP-based interoperability among constrained networks.

A. LoRaWAN transmission technology

LoRaWAN [2] has been chosen for this research proposal
due to its strengths in the context of heterogeneous and
scalable IoT scenarios. LoRaWAN is an LPWAN technology
that has recently gained a lot of attention from both industry
and academia. It is developed by the LoRa Alliance4, has an
open specification [2], and is supported by numerous market-
ready products and network deployments around the globe.
LoRaWAN is targeted to low-power, low-bandwidth, and low-
cost IoT device solutions. It employs the sub-1GHz unlicensed
Industrial, Scientific, and Medical (ISM) radio band in each
region, tied to severe regulations such as a duty-cycle of 1%.
For this reason, messages in LoRaWAN communications have
a maximum payload size in the order of 10s of bytes. It
employs a star-of-stars architecture, where all the end-device
communications go through a central network server that

4https://www.lora-alliance.org/



routes all the application level data, as well as maintaining
an overall network health through Medium Access Control
(MAC) commands. LoRaWAN off-the-shelf security includes
a network join procedure known as Over-The-Air Activation
(OTAA), is based in a pre-shared root key. However, the OTAA
procedure itself is vendor-specific, and the root key is shared
by the end-device and the central LoRaWAN platform, thus
the confidentiality of all the exchanged packets depends on
the particular deployment security policies. This is a current
challenge because regular off-the-shelf LoRaWAN assumes
trust in the central server. If it gets compromised, all the
following messages may be decrypted and tampered with.

B. Secure Transmission of IPv6 packets over LoRaWAN

1) SCHC: Different LPWAN technologies employ radio
communications over unlicensed radio-bands. Hence, they
rely on simple and vendor-specific network stacks, where
application data is directly transported over the MAC layer.
They lack a complete IP network stack middelware. This
contradicts the vision of IoT, where interoperability over IP
networks is mandatory for end-devices. The IoT paradigm
aims at the interconnection of heterogeneous devices through
low-bandwidth networks. This demands the use of novel mech-
anisms and protocols in order to enable a seamless and secure
integration of these devices with the rest of the Internet. Due to
the vast number of connected IoT devices, which is expected
to grow exponentially, the IPv6 address space is necessary to
accommodate such a large amount of devices. However, IPv6
header sizes are prohibitively large for the typical LPWAN
data-rate characteristics. This hinders the direct integration of
LPWAN-based devices with other deployments. To this end,
the Internet Engineering Task Force (IETF) has developed the
novel Static Context Header Compression (SCHC) [6] technol-
ogy. SCHC provides a header compression and fragmentation
mechanism for IPv6/UDP packets. Also, a new scheme to
compress CoAP headers with SCHC is also currently under
standardization [7]. SCHC exploits certain characteristics of
LPWANs in order to perform efficient header compression,
namely: (i) the star-of-stars topology found in LPWANs guar-
antees that the source and destination does remains even if the
path changes, and (ii) device behaviour is unlikely to change
during its regular life-cycle. As a consequence, data-flows are
commonly well-known during the design and development
stage of IoT MTC scenarios. Thanks to SCHC, devices are
able to interoperate with IPv6 hosts connected to the Internet
while improving radio spectrum usage and power efficiency.

SCHC is placed as an adaptation layer between the MAC
and the network layers, and is independent from the LPWAN
technology below it. Since not all LPWAN tehcnologies are
capable of accommodating the IPV6 required maximum trans-
mission unit of 1280 bytes in a single message, SCHC includes
an optional fragmentation and reassembly mechanism. This
procedure is tailored to the LPWAN’s low data-rate require-
ments Overall, the best contribution of SCHC is hiding the
technical details and limitations of underlying LPWANs, to

enable the integration of end-devices through standardized
Internet protocols.

2) OSCORE: The Object Security for Constrained RESTful
Environments (OSCORE) [8] is employed in this proposal
during the second stage of operation, shown in Fig. 2.b.
OSCORE is a protocol extension of CoAP that addresses
end-to-end security. It is a technology that secures individual
CoAP packets at an object level, as opposed to other related
technologies that perform a handshake and establish a security
session. Hence, it maintains end-to-end security even when
CoAP proxies are found in the route. OSCORE offers integrity,
authenticity, and confidentiality mechanisms at a message
level. To do so, the plain CoAP message gets encapsulated
as a compact authenticated and encrypted OSCORE object.
Other countermeasures offered include response delay attacks,
and response mismatch attacks, through secure binding mech-
anisms among corresponding messages identified by their au-
thenticated parameters. One of the highlighted improvements
of OSCORE over related technologies, like Data Transport
Layer Security (DTLS), is presented in its capacity to secure
multicast transmissions. As opposed to session-oriented pro-
tocols OSCORE encrypts the messages at a packet level. As a
consequence, multicast transmissions are efficiently supported,
even in vast IoT deployments, where the same message
must be securely broadcasted to hundreds or even thousands
of devices. For this reason, OSCORE is considered as the
indisputable choice for open standardized solutions in group
communications within IoT applications [9]. Additionally, OS-
CORE is an enabler for the device-management Lightweight
Machine-to-Machine (LwM2M) protocol, by the Open Mobile
Alliance (OMA)5, or Open Connectivity’s Fairhair6.

C. Firmware Updates Over The Air

Another key feature of current heterogeneous IoT scenarios
is a trusted end-device software update management procedure
that is able to distribute new versions of binary code wirelessly.
This paradigm is known as Firmware Updates Over-The-Air
(FUOTA). After a new patch, devices will receive and verify
the updated binary code from a trusted platform over the radio
technology. After the authenticity and integrity validation,
the end-device reprograms itself with the new firmware and
restarts operation. Due to the limited data-rate of LPWAN
technologies, delta mechanisms are preferred, sending only the
minimum the different bits of data required to locally rebuild
the whole updated firmware.

III. PROPOSED ARCHITECTURE

This section describes the proposed architecture, presented
in Fig. 1. It is an energy-efficient suite for constrained low-
power environments that combines a novel lightweight boot-
strapping process; OSCORE for end-to-end data protection;
SCHC for efficient header compression and fragmentation;
Peer-to-Peer storage solutions for the scalable distribution of
firmware updates; as well as distributed ledger technologies

5https://omaspecworks.org/
6https://openconnectivity.org/developer/specifications/fairhair/



InternetEnd-Devices
IoT Agent

LPWAN "A"

LPWAN "B"

Authentication
Server

Secure end-to-end IPv6/UDP/CoAP

RAIDUS/Diameter

ASVIN PlatformHTTPS

Third-party hosts

Secure Update and 
Trust Monitoring Platform

Fig. 1. Proposal architecture.

to secure the integrity of distributed content. By leverag-
ing on these standardized protocols, this architecture enables
energy-efficient security and interoperability of distributed and
heterogeneous low-power wireless networks to enable trust
monitoring and secure update firmware distribution.

In this proposal, the lightweight Low-Overhead EAP over
CoAP (LO-CoAP-EAP) [10] protocol is chosen to perform au-
thentication and key agreement. LO-CoAP-EAP leverages on
three open standards to guarantee interoperability, namely: (i)
the Constrained Application Protocol (CoAP) [11] to encode
application payloads, (ii) EAP for the encapsulation of au-
thentication messages, and (iii) is based on the Authentication,
Authorization, and Accounting framework (AAA) [12], which
provides scalability and homogeneity to perform security
network management tasks.

In this work, we focus on two different stages in the IoT
end-device life-cycle. These two stages are depicted in Fig. 2.
First, devices perform a bootstrapping process when they are
deployed. This process includes a secure authentication and
key agreement exchange, shown in Fig. 2.a. Once the device
successfully authenticates itself, derived session keys are ob-
tained by both end-points. Next, the device switches over to
the regular operation stage, Fig. 2.b, where all communications
are secured through OSCORE.

Access Network

IoT Agent
End Devices

LO-CoAP-EAP
MESSAGE 2 

LO-CoAP-EAP
MESSAGE 3 

Stage 1 
Authenticated Key Agreement 

Stage 2 
OSCORE Protected Data

Exchange 

End Devices

OSCORE

OSCORE

IoT Agent

Access Network

LO-CoAP-EAP
MESSAGE 1

LO-CoAP-EAP

(a) (b)

Fig. 2. End device operation stages: (a) secure authentication stage, and (b)
secure update interaction.

A. End-Device

It is a small form-factor hardware which sits on the edge
of an LPWAN network. It consists of a microcontroller,

radio module, and sensor peripherals. These end-devices are
typically installed in hard-to-reach locations under adverse
conditions. Additionally, end-devices are relegated to simple
monitoring and actuation tasks that deposits the obtained data
in a centralized platform. The end-device shall incorporate a
LoRaWAN module. Upon deployment, the end-device estab-
lishes a secure communication link with the LoRaWAN server
through the LoRaWAN OTAA scheme [2]. Once connected
to the LoRaWAN network, it performs the LO-CoAP-EAP
authentication and key agreement procedure together with the
IoT agent. As a result, the end-device obtains a session key
employed for further communications with the secure update
platform, through OSCORE protected messages.

B. IoT Agent

It is a trusted component that acts as a bridge between
the constrained and non-constrained side of the end-to-end
interaction, placed within the secure update and trust mon-
itoring platform. In essence, it acts as a bridge among the
low-power network and the platform. Hence, its IPv6 net-
work address must be pre-provided to the end-devices, and
must continuously listen to UDP/CoAP requests. During the
authentication and key agreement stage, the Iot Agent plays
the role of authenticator in the AAA framework. Thus, all the
LO-CoAP-EAP messages transmitted by end-devices will be
addressed to it. Then, the received payload is encapsulated in
a non-constrained authentication protocol, such as RADIUS
or Diameter. The resulting re-encapsulated EAP payload is
forwarded to the authentication server, the end component of
the AAA architecture. Likewise, the IoT Agent will do the
reverse procedure for downlink messages. As a result, it will
attain a set of session keys that will be employed for the mes-
sages in the following exchanges. During the operation stage,
it acts as the end-point of the OSCORE communications,
embedding the end-device CoAP requests embedded within
OSCORE messages to the REST APIs exposed by the different
elements of the asvin platform. Due to the lack of CoAP and
OSCORE support by these end-points, the IoT Agent acts as
a translator among the constrained and non-constrained side
of the interaction.



Fig. 3. asvin Platform Architecture

C. Authentication Server

It presents the final end-point of the AAA architecture, serv-
ing as an central administrative point for network management.
It hides the technical details of each end-device capabilities by
employing the EAP technology that grants flexibility to the
authentication process. The authentication servers chooses the
adequate authentication and key agreement methodology for
each device. Hence, administrators only have to provide the
cryptographic material and security policies, in a homogeneous
and normalized manner. After each end-device is deployed,
it performs a bootstrapping process with the authentication
server. As a result, both end-points of the communication
authenticate themselves mutually and fresh sessions key are
attained.

D. asvin Platform

The asvin platform7 is a Platform-as-a-Service (PaaS) to
facilitate over-the-air security patches for IoT devices using
novel decentralized and distributed technologies. It provides
a complete solution for device, security patches and rollout
management. It is comprised of four components as shown in
Fig. 3, each of them tailored to efficiently perform a specific
set of tasks.

The asvin platform components securely communicate
among them through HTTPS, a secure extension of HTTP that
leverages on TLS/SSL. Public key certificates are used to au-
thenticate the components, as well as to secure the exchanges
between external clients. The IoT agent forwards end-device
messages to the platform using the exposed REST API end-
points. Also, the asvin platform can directly communicate with
each end-device through their unique IPv6 address via the IoT
agent’s secure CoAP/HTTP translation.

1) IPFS: The IPFS protocol is utilized to store firmware
and patches. The IPFS is a content-addressable peer to peer
method for storing and sharing hypermedia in a distributed
file system. It solves the problem of duplicate files across the

7https://asvin.readthedocs.io/en/latest/

network as it exists in the HTTPS and remove redundancy.
When a firmware file is stored on the network a hash is
generated based on content of the firmware and is stored
on a blockchain network. This unique hash is called Content
Identifier (CID)8. Subsequently, the CID is utilized to pull the
firmware from IPFS server.

2) Blockchain: The asvin platform employs distributed
ledger technology to provide an extra layer of security and
resiliency to the platform. All events of the platform are
recorded in a shared ledger. The distributed ledger also con-
tains critical meta data information of devices and firmware.
The blockchain infrastructure is based on Hyperledger Fabric9

and Besu10. Both are private permissioned blockchain network
technologies designed and developed under the Linux Foun-
dation11.

3) The Customer Platform: The customer platform facili-
tates a web-interface dashboard, Fig. 4, to manage end-devices,
and their firmware updates. It acts as an abstraction layer to
hide the complexity and sophistication of the decentralized and
distributed ledger technologies of the asvin platform. Thus,
it can be operated without specialized knowledge or tools.
The customer platform delivers device management, where
the network operator will be able to use the dashboard to
register end-devices, group them in several classes, and review
device monitoring statistics. Additionally, the user can upload
firmware update files, which are stored on the platform’s IPFS
server. The operator can schedule a rollout of the latest patch
files to the device groups. The customer platform interacts
with the Hyperledger blockchain server to update the end-
device firmware database and keeps the version control server
updated with information from the latest firmware.

4) Version Controller: The version controller component
consists of multiple nodes which have an exact copy of a
web server and host identical services. Nodes form a cluster

8https://docs.ipfs.io/concepts/content-addressing/
9https://www.hyperledger.org/use/fabric
10https://www.hyperledger.org/use/besu
11https://www.linuxfoundation.org/



Fig. 4. Customer platform — firmware and rollout management screen

with a fully functional web server that can serve a request
independently. Each node has different network address, but
they are hidden from other components of the asvin platform
architecture. Hence, an abstraction layer is used on top of the
cluster to hide complexity. This abstraction layer makes use
of round-robin DNS technique for load balancing and fault
tolerance. The server performs following tasks: (i) Response
to end-devices, in order to register on the asvin platform, the
end-devices send request to the version controller. They also
poll the version controller to check for new software updates.
In turn, the server responds with information of the current
valid firmware and rollout id if any update is scheduled. (ii)
Latest firmware version list, it maintains real-time information
of different firmware versions available on data storage servers.
The version controller has a list of all available firmware on
the asvin platform for each end-device. Note that the version
controller and customer platform share same database.

5) Trust monitoring: The threat landscape of end devices
is quite large. There are multiple pain points for an end-
device where it can be compromised. An attacker can steal
data from the device or employed it as a bot to raise DDoS
attacks. It is even more alarming when an end-device is
part of a critical company network. The IETF has given
guidelines like Manufacturer Usage Description (MUD)12 to
substantially reduce the threat surface of end-device to those
communication intended by the manufactures. In that line,
the asvin Platform provides a novel dynamic trust monitoring
feature to monitor continuously the end-devices for external
threats and raise an alarm on the dashboard before an end-
device comes under threats. The trust monitoring service
includes scanning the critical characteristics of end-devices for
an example number of successful patches, number of device
reboots, last heartbeat from the device and availability of
the encryption key generated after the secure bootstrapping
process. All these parameters play crucial role to determine
end-device security. The Asvin Platform will collect these
parameters from end-device in user defined configurable time
interval. On the platform the parameters will be analyzed and
a dynamic trust score will be calculated. The platform will
also generate a weekly, monthly trust monitoring report for
end-devices.

IV. CONCLUSIONS

IoT-based technologies and applications have proliferated
during recent years. However, different vendors compete to

12https://tools.ietf.org/html/rfc8520

get the biggest market share, without considering open stan-
dardized protocols or architectures. Hence, vendors have yet
not filled the gap for an interoperable platform that manages
the distribution of security update patches over radio in a
homogeneous and concise way.

In order to solve these issues, in this work we provide
a trust-worthy and human-centric IoT platform to monitor
vulnerabilities and manage secure update patches over a con-
strained network. This solution enables trust monitoring and
firmware update distribution employing novel open standard-
ization efforts designed for constrained devices. The presented
solution leverages on LO-CoAP-EAP, a novel lightweight
bootstrapping protocol, LoRaWAN, a wide-spread long-range
communication technology, SCHC, an IPv6 header compres-
sion and fragmentation mechanism, OSCORE, an end-to-end
application-layer protection, IPFS a peer-to-peer decentralized
storage solution, as well as a Hyperledger, a distributed ledger
technology for secure validation of the distributed contents. In
future contributions, we expect to present test validation results
obtained from our current in-progress development.

REFERENCES

[1] R. Sanchez-Iborra and M.-D. Cano, “State of the art in LP-
WAN solutions for industrial IoT services,” Sensors, vol. 16,
no. 5, p. 708, 2016. [Online]. Available: http://www.mdpi.com/1424-
8220/16/5/708/htm

[2] LoRa Alliance, N. Sornin, M. Luis, T. Eirich, T. Kramp, and
O. Hersent, “LoRaWAN Specification v1.0.2,” LoRa Alliance, 2016.
[Online]. Available: https://lora-alliance.org/resource-hub/lorawantm-
specification-v102

[3] O. Garcia-Morchon, S. Kumar, and M. Sethi, “Internet of Things (IoT)
Security: State of the Art and Challenges,” Tech. Rep., apr 2019.
[Online]. Available: https://www.rfc-editor.org/info/rfc8576

[4] A. Rubens, C. Rigney, S. Willens, and W. A. Simpson, “Remote
Authentication Dial In User Service (RADIUS),” RFC 2865, 2000.
[Online]. Available: https://rfc-editor.org/rfc/rfc2865.txt

[5] G. Zorn, “Diameter Network Access Server Application,” RFC 7155,
2014. [Online]. Available: https://rfc-editor.org/rfc/rfc7155.txt

[6] A. Minaburo, L. Toutain, C. Gomez, and D. Barthel, “SCHC:
Generic Framework for Static Context Header Compression and
Fragmentation,” no. 8724, apr 2020. [Online]. Available: https://rfc-
editor.org/rfc/rfc8724.txt https://www.rfc-editor.org/info/rfc8724

[7] A. Minaburo and L. Toutain, “LPWAN Static Context Header
Compression (SCHC) for CoAP,” Internet Draft, Internet
Engineering Task Force, Dec. 2021. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-lpwan-coap-static-context-hc-18

[8] G. Selander, J. Mattsson, F. Palombini, and L. Seitz, “Object
Security for Constrained RESTful Environments (OSCORE),” RFC
8613,, jul 2019. [Online]. Available: http://tools.ietf.org/rfc/rfc8613.txt
https://www.rfc-editor.org/info/rfc8613

[9] J. Park, M. Jung, and E. P. Rathgeb, “Survey for Secure IoT Group
Communication,” 2019 IEEE International Conference on Pervasive
Computing and Communications Workshops, PerCom Workshops 2019,
pp. 1026–1031, 2019.

[10] D. Garcia-Carrillo, R. Marin-Lopez, A. Kandasamy, and A. Pelov, “A
CoAP-Based Network Access Authentication Service for Low-Power
Wide Area Networks: LO-CoAP-EAP,” Sensors, vol. 17, no. 11,
p. 2646, nov 2017. [Online]. Available: http://www.mdpi.com/1424-
8220/17/11/2646

[11] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application
Protocol (CoAP),” Tech. Rep., jun 2014. [Online]. Available:
https://www.rfc-editor.org/info/rfc7252

[12] D. Spence, G. Gross, C. de Laat, S. Farrell, L. H. M. Gommans, P. R.
Calhoun, M. Holdrege, B. W. de Bruijn, and J. Vollbrecht, “AAA
Authorization Framework,” RFC 2904, 2000. [Online]. Available:
https://rfc-editor.org/rfc/rfc2904.txt


